CLASSIFYING AMENABLE OPERATOR ALGEBRAS
JOINT WORK WITH J. GABE, C. SCHAFHAUSER,
A. TIKUISIS, AND S. WHITE

José Carrión
TCU

INTRODUCTION

SOME MOTIVATION

Consider

$$
\begin{aligned}
M_{2}(\mathbb{C}) \subset M_{4}(\mathbb{C}) & \subset M_{8}(\mathbb{C}) \subset \cdots \subset \bigcup M_{2^{n}}(\mathbb{C}) \\
& a \mapsto\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
\end{aligned}
$$

Think of the elements of $\bigcup M_{2 n}(\mathbb{C})$ as "infinite by infinite matrices" that act on the vector space $\ell^{2}(\mathbb{N})$.

SOME MOTIVATION (CONT'D)

Several ways to topologize these. Here are two:

SOME MOTIVATION (CONT'D)

Several ways to topologize these. Here are two:

- two "matrices" are close if enough of their entries are close. This leads to the weak operator topology (wot).

SOME MOTIVATION (CONTD)

Several ways to topologize these. Here are two:

- two "matrices" are close if enough of their entries are close. This leads to the weak operator topology (wot).
- two "matrices" are close if they map the unit ball of $\ell^{2}(\mathbb{N})$ to nearly the same place. This leads to the $\|\cdot\|$-topology.

SOME MOTIVATION (CONTD)

Several ways to topologize these. Here are two:

- two "matrices" are close if enough of their entries are close. This leads to the weak operator topology (wot).
- two "matrices" are close if they map the unit ball of $\ell^{2}(\mathbb{N})$ to nearly the same place. This leads to the $\|\cdot\|$-topology.

These are examples of operator algebras. This talk is about classifying them: how to tell them apart.

SOME MOTIVATION (CONT'D)

Two very early examples of classification results:
Murray-von Neumann, 1943

$$
{\overline{\bigcup M_{2^{n}}(\mathbb{C})}}^{\text {wot }} \cong{\overline{\bigcup M_{3^{n}}(\mathbb{C})}}^{\text {wot }}
$$

SOME MOTIVATION (CONT'D)

Two very early examples of classification results:
Murray-von Neumann, 1943

$$
{\overline{\bigcup M_{2^{n}}(\mathbb{C})}}^{\text {wot }} \cong{\overline{\bigcup M_{3^{n}}(\mathbb{C})}}^{\text {wot }}
$$

Glimm, 1960

$$
\overline{\bigcup M_{2^{n}}(\mathbb{C})}\|\cdot\|{\overline{\bigcup M_{3^{n}}(\mathbb{C})}}^{\|\cdot\|}
$$

SOME MOTIVATION (CONT'D)

Two very early examples of classification results:

Murray-von Neumann, 1943

$$
{\overline{\bigcup M_{2}}(\mathbb{C})}^{\text {WOT }} \cong{\overline{\int M_{3} n}(\mathbb{C})}^{\text {WOT }}
$$

Glimm, 1960

$$
\overline{\bigcup M_{2^{n}}(\mathbb{C})}\|\cdot\| \neq{\overline{\bigcup M_{3 n}(\mathbb{C})}}^{\|\cdot\|}
$$

How to distinguish these last two? Associate a group with such algebras that is invariant under isomorphism, called $K_{0}(-)$. It turns out that

$$
K_{0}\left(\overline{\bigcup M_{p^{n}}(\mathbb{C})}{ }^{\|} \cdot \|\right)=\left\{\frac{m}{p^{n}}: m, n \in \mathbb{Z}\right\} .
$$

Operator algebras

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: *-algebra, $\left\langle T^{*} v, w\right\rangle=\langle v, T w\rangle$
- analytic structure: $\|T\|=\sup \{\|T v\|:\|v\|=1\}$, Banach space.

Operator algebras

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: $*$-algebra, $\left\langle T^{*} v, w\right\rangle=\langle v, T w\rangle$
- analytic structure: $\|T\|=\sup \{\|T v\|:\|v\|=1\}$, Banach space.

Operator algebras

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: $*$-algebra, $\left\langle T^{*} v, w\right\rangle=\langle v, T w\rangle$
- analytic structure: $\|T\|=\sup \{\|T v\|:\|v\|=1\}$, Banach space.
- e.g. $\mathcal{H}=\mathbb{C}^{n} \rightsquigarrow M_{n}(\mathbb{C})$

Operator algebras

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: $*$-algebra, $\left\langle T^{*} v, w\right\rangle=\langle v, T w\rangle$
- analytic structure: $\|T\|=\sup \{\|T v\|:\|v\|=1\}$, Banach space.
- e.g. $\mathcal{H}=\mathbb{C}^{n} \rightsquigarrow M_{n}(\mathbb{C})$

C*-algebras

- $A \subset \mathcal{B}(\mathcal{H})$, closed in $\|\cdot\|$
- A abelian $\rightsquigarrow C(X)$
- "Topological flavor"

von Neumann algebras

- $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$, closed in wot.
- \mathcal{M} abelian $\rightsquigarrow L^{\infty}(X, \mu)$
- "Measure theoretic flavor"

EXAMPLE: $C^{*}(\mathbb{Z})$

Can represent \mathbb{Z} "concretely" as operators on $\ell^{2}(\mathbb{Z}), n \mapsto \lambda_{n}$; λ_{n} shifts entries of vector by n.

$C_{\lambda}^{*}(Z):=\|\cdot\|-c$ lowe of *-dy generated by the $\lambda_{n}^{\prime} s$

MORE GENERAL EXAMPLE: GROUP ALGEBRAS

- Г: (discrete) group. Get Hilbert space $\ell^{2}(\Gamma)$ of square summable functions $\Gamma \rightarrow \mathbb{C}$ with basis $\left\{\delta_{\gamma}\right\}_{\gamma \in \Gamma}$ (δ_{y} : indicator function of $\{y\}$).

More general example: group algebras

- Г: (discrete) group. Get Hilbert space $\ell^{2}(\Gamma)$ of square summable functions $\Gamma \rightarrow \mathbb{C}$ with basis $\left\{\delta_{\gamma}\right\}_{\gamma \in \Gamma}$ (δ_{y} : indicator function of $\{y\}$).
- Left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}\left(\ell^{2}(\Gamma)\right)$, where $\lambda_{y}\left(\delta_{y^{\prime}}\right)=\delta_{y y^{\prime}}$.

More general example: GROUP ALGEBRAS

- Г: (discrete) group. Get Hilbert space $\ell^{2}(\Gamma)$ of square summable functions $\Gamma \rightarrow \mathbb{C}$ with basis $\left\{\delta_{\gamma}\right\}_{\gamma \in \Gamma}$ (δ_{γ} : indicator function of $\{\gamma\}$).
- left regular representation: $\gamma \mapsto \lambda_{y} \in \mathcal{B}\left(\ell^{2}(\Gamma)\right)$, where $\lambda_{y}\left(\delta_{y^{\prime}}\right)=\delta_{\gamma \gamma^{\prime}}$.
- $C_{\lambda}^{*}(\Gamma):=\|\cdot\|$-closure of $*$-algebra generated by the λ_{γ} 's

More general example: GROUP ALGEBRAS

- Г: (discrete) group. Get Hilbert space $\ell^{2}(\Gamma)$ of square summable functions $\Gamma \rightarrow \mathbb{C}$ with basis $\left\{\delta_{\gamma}\right\}_{\gamma \in \Gamma}$ (δ_{y} : indicator function of $\{y\}$).
- left regular representation: $\gamma \mapsto \lambda_{y} \in \mathcal{B}\left(\ell^{2}(\Gamma)\right)$, where $\lambda_{\gamma}\left(\delta_{\gamma^{\prime}}\right)=\delta_{\gamma y^{\prime}}$.
- $C_{\lambda}^{*}(\Gamma):=\|\cdot\|$-closure of $*$-algebra generated by the λ_{γ} 's
- $\mathrm{VN}(\Gamma):=$ WOT-closure of $*$-algebra generated by the λ_{y} 's

More general example: group algebras

- Γ : (discrete) group. Get Hilbert space $\ell^{2}(\Gamma)$ of square summable functions $\Gamma \rightarrow \mathbb{C}$ with basis $\left\{\delta_{\gamma}\right\}_{\gamma \in \Gamma}$ (δ_{y} : indicator function of $\{y\}$).
- left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}\left(\ell^{2}(\Gamma)\right)$, where $\lambda_{y}\left(\delta_{y^{\prime}}\right)=\delta_{\gamma y^{\prime}}$.
- $C_{\lambda}^{*}(\Gamma):=\|\cdot\|$-closure of $*$-algebra generated by the λ_{γ} 's
- $\mathrm{vN}(\Gamma):=$ WOT-closure of $*$-algebra generated by the λ_{y} 's

This generalizes the Fourier transform:

- $C_{\lambda}^{*}(\mathbb{Z}) \cong C(\mathbb{T})$
- Moreover: $\mathrm{vN}(\mathbb{Z}) \cong L^{\infty}(\mathbb{T})$

More general example: group algebras

- Г: (discrete) group. Get Hilbert space $\ell^{2}(\Gamma)$ of square summable functions $\Gamma \rightarrow \mathbb{C}$ with basis $\left\{\delta_{\gamma}\right\}_{\gamma \in \Gamma}$ (δ_{y} : indicator function of $\{y\}$).
- left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}\left(\ell^{2}(\Gamma)\right)$, where $\lambda_{y}\left(\delta_{y^{\prime}}\right)=\delta_{y y^{\prime}}$.
- $C_{\lambda}^{*}(\Gamma):=\|\cdot\|$-closure of $*$-algebra generated by the λ_{γ} 's
- $\mathrm{VN}(\Gamma):=$ WOT-closure of $*$-algebra generated by the λ_{y} 's

This generalizes the Fourier transform:

- $C_{\lambda}^{*}(\mathbb{Z}) \cong C(\mathbb{T}) \not \approx C\left(\mathbb{T}^{2}\right) \cong C^{*}\left(\mathbb{Z}^{2}\right)$
- Moreover: $\mathrm{vN}(\mathbb{Z}) \cong L^{\infty}(\mathbb{T}) \cong L^{\infty}\left(\mathbb{T}^{2}\right) \cong \mathrm{vN}\left(\mathbb{Z}^{2}\right)$

EXAMPLE: THE IRRATIONAL ROTATION C*-ALGEBRA A_{θ}

- Fix $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be rotation by $2 \pi \theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}: n \mapsto \varphi^{n}$.

EXAMPLE: THE IRRATIONAL ROTATION C*-ALGEBRA A_{θ}

- Fix $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be rotation by $2 \pi \theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}: n \mapsto \varphi^{n}$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows:

EXAMPLE: THE IRRATIONAL ROTATION C*-ALGEBRA A_{θ}

- Fix $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be rotation by $2 \pi \theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}: n \mapsto \varphi^{n}$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows:

Consider the operators T and $M_{f}(f \in C(\mathbb{T}))$ on $L^{2}(\mathbb{T})$,

$$
T(g)=g \circ \varphi^{-1}, \quad M_{f}(g)=f g .
$$

$A_{\theta}:=\|\cdot\|$-closure of the $*$-algebra they generate.

EXAMPLE: THE IRRATIONAL ROTATION C* -ALGEBRA A_{θ}

- Fix $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be rotation by $2 \pi \theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}: n \mapsto \varphi^{n}$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows:

Consider the operators T and $M_{f}(f \in C(\mathbb{T}))$ on $L^{2}(\mathbb{T})$,

$$
T(g)=g \circ \varphi^{-1}, \quad M_{f}(g)=f g .
$$

$A_{\theta}:=\|\cdot\|$-closure of the $*$-algebra they generate.
Note: $T^{-1} M_{f} T=M_{f \circ \varphi}$. Think of semidirect products.

EXAMPLE: THE IRRATIONAL ROTATION C*-ALGEBRA A_{θ}

- Fix $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be rotation by $2 \pi \theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}: n \mapsto \varphi^{n}$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows:

Consider the operators T and $M_{f}(f \in C(\mathbb{T}))$ on $L^{2}(\mathbb{T})$,

$$
T(g)=g \circ \varphi^{-1}, \quad M_{f}(g)=f g .
$$

$A_{\theta}:=\|\cdot\|$-closure of the $*$-algebra they generate. Note: $T^{-1} M_{f} T=M_{f \circ \varphi^{-1}}$. Think of semidirect products.
(Foreshadowing) observations on A_{θ}

- A_{θ} is a "noncommutative" version of $\mathbb{T}^{2} \rightsquigarrow A_{\theta}$ is finite dimensional (in some noncommutative sense).

EXAMPLE: THE IRRATIONAL ROTATION C*-ALGEBRA A_{θ}

- Fix $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be rotation by $2 \pi \theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}: n \mapsto \varphi^{n}$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows:

Consider the operators T and $M_{f}(f \in C(\mathbb{T}))$ on $L^{2}(\mathbb{T})$,

$$
T(g)=g \circ \varphi^{-1}, \quad M_{f}(g)=f g .
$$

$A_{\theta}:=\|\cdot\|$-closure of the $*$-algebra they generate. Note: $T^{-1} M_{f} T=M_{f \circ \varphi^{-1}}$. Think of semidirect products.
(Foreshadowing) observations on A_{θ}

- A_{θ} is a "noncommutative" version of $\mathbb{T}^{2} \rightsquigarrow A_{\theta}$ is finite dimensional (in some noncommutative sense).
- $\theta \notin \mathbb{Q} \Rightarrow \nexists$ nontrivial closed invariant subsets of \mathbb{T}. Translation: no nontrivial closed ideals of A_{θ}. It's simple.

EXAMPLE: THE IRRATIONAL ROTATION C*-ALGEBRA A_{θ}

- Fix $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be rotation by $2 \pi \theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}: n \mapsto \varphi^{n}$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows:

Consider the operators T and $M_{f}(f \in C(\mathbb{T}))$ on $L^{2}(\mathbb{T})$,

$$
T(g)=g \circ \varphi^{-1}, \quad M_{f}(g)=f g .
$$

$A_{\theta}:=\|\cdot\|$-closure of the $*$-algebra they generate. Note: $T^{-1} M_{f} T=M_{f \circ \varphi}$. Think of semidirect products.
(Foreshadowing) observations on A_{θ}

- A_{θ} is a "noncommutative" version of $\mathbb{T}^{2} \rightsquigarrow A_{\theta}$ is finite dimensional (in some noncommutative sense).
- $\theta \notin \mathbb{Q} \Rightarrow \nexists$ nontrivial closed invariant subsets of \mathbb{T}. Translation: no nontrivial closed ideals of A_{θ}. It's simple.
- A_{θ} is built using friendly (even abelian) objects. It's amenable.

More general example: group actions/dynamics

- group Γ acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\curvearrowright}$.
- Get induced action of Γ on $C(X)$: $\gamma f=f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C_{\lambda}^{*}(\Gamma)$ and $C(X)$ and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \rightsquigarrow N \rtimes H$.

MORE GENERAL EXAMPLE: GROUP ACTIONS/DYNAMICS

- group 「 acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\curvearrowright} X$.
- Get induced action of Γ on $C(X): \gamma f=f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C_{\lambda}^{*}(\Gamma)$ and $C(X)$ and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \rightsquigarrow N \rtimes H$.

MORE GENERAL EXAMPLE: GROUP ACTIONS/DYNAMICS

- group 「 acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\curvearrowright} X$.
- Get induced action of Γ on $C(X): ~ \gamma f=f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C_{\lambda}^{*}(\Gamma)$ and $C(X)$ and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \rightsquigarrow N \rtimes H$.

MORE GENERAL EXAMPLE: GROUP ACTIONS/DYNAMICS

- group 「 acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\curvearrowright} X$.
- Get induced action of Γ on $C(X): ~ \gamma f=f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C_{\lambda}^{*}(\Gamma)$ and $C(X)$ and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \rightsquigarrow N \rtimes H$.

FACTORS, FINITE DIMENSIONAL APPROXIMATIONS, AMENABILITY:
 CLASSIFYING VN ALGEBRAS

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $B\left(\ell^{2}(\mathbb{N})\right)$

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $B\left(\ell^{2}(\mathbb{N})\right)$

Examples II

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $B\left(\ell^{2}(\mathbb{N})\right)$

Examples II

- $\mathcal{R}:={\overline{\bigcup_{n \geq 1}} M_{2^{n}}(\mathbb{C})^{\text {wot }}}^{\text {w }}$
- $\mathrm{vN}\left(S_{\infty}\right)$
$S_{\infty}=$ finite permutations on \mathbb{N}

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $B\left(\ell^{2}(\mathbb{N})\right)$

Examples II

- $\mathcal{R}:={\overline{\bigcup_{n \geq 1}} M_{2^{n}}(\mathbb{C})^{\text {wot }}}^{\text {w }}$
- $\mathrm{vN}\left(S_{\infty}\right)$
$S_{\infty}=$ finite permutations on \mathbb{N}
- $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $B\left(\ell^{2}(\mathbb{N})\right)$

Examples II

- $\mathcal{R}:={\overline{\bigcup_{n \geq 1}} M_{2^{n}}(\mathbb{C})}^{\text {wot }}$
- $\mathrm{vN}\left(S_{\infty}\right)$
$S_{\infty}=$ finite permutations on \mathbb{N}
- $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$
- $B\left(\ell^{2}(\mathbb{N}, \mathcal{R})\right)$
("matrices" with entries in \mathcal{R})

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $B\left(\ell^{2}(\mathbb{N})\right)$

$$
\begin{aligned}
& \text { projections } \sim\{1,2, \ldots, n\} \\
& \rightsquigarrow \text { type } I_{n} \quad(n=\infty \text { allowed })
\end{aligned}
$$

Examples II

- $\mathcal{R}:=\bar{\bigcup}_{n \geq 1} M_{2^{n}}(\mathbb{C})^{\text {wot }}$
- $\mathrm{vN}\left(S_{\infty}\right)$
$S_{\infty}=$ finite permutations on \mathbb{N}
- $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$
- $B\left(\ell^{2}(\mathbb{N}, \mathcal{R})\right)$
("matrices" with entries in \mathcal{R})

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $B\left(\ell^{2}(\mathbb{N})\right) \quad \rightsquigarrow$ type $I_{n} \quad(n=\infty$ allowed $)$

Examples II

- $\mathcal{R}:={\overline{\bigcup_{n \geq 1}} M_{2^{n}}(\mathbb{C})^{\text {wot }}}^{\text {w }}$
- $\mathrm{vN}\left(S_{\infty}\right)$
$S_{\infty}=$ finite permutations on \mathbb{N}
- $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$
- $B\left(\ell^{2}(\mathbb{N}, \mathcal{R})\right)$
("matrices" with entries in \mathcal{R})

FACTORS

Factor: a vV alg. with no nontrivial vN alg. ideals.

Examples I

- $M_{k}(\mathbb{C})$
- $\left.B\left(\ell^{2}(\mathbb{N})\right)\right\} \rightsquigarrow$ type $I_{n} \quad(n=\infty$ allowed $)$

Examples II

$$
{ }_{n \geq 1} M_{2^{n}}(\mathbb{C})^{\text {wot }}
$$

- $\mathcal{R}:=\bar{\bigcup}_{n \geq 1} M_{2^{n}}(\mathbb{C})^{\text {wot }}$
- $\mathrm{vN}\left(S_{\infty}\right)$
$S_{\infty}=$ finite permutations on \mathbb{N}
- $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$
- $B\left(\ell^{2}(\mathbb{N}, \mathcal{R})\right)$
("matrices" with entries in \mathcal{R})

$$
\text { projections } \sim\{1,2, \ldots, n\}
$$

$$
\begin{aligned}
& \text { projections } \sim[0,1] \\
& \rightsquigarrow \text { type } \|_{1} \\
& \text { projections } \sim[0, \infty] \\
& \rightsquigarrow \text { type } \|_{\infty}
\end{aligned}
$$

Approximately finite dimensional vN algebras

Def: Approximately finite dimensional (AFD) vN algebra M
Contains finite dim'l subalgebras $F_{1} \subset F_{2} \subset \cdots \subset M$ with wot-dense union.
(Note: finite dim'l $\Leftrightarrow \bigoplus_{k=1}^{N} M_{n(k)}(\mathbb{C})$.)

APPROXIMATELY FINITE DIMENSIONAL VN ALGEBRAS

Def: Approximately finite dimensional (AFD) vN algebra M
Contains finite dim'l subalgebras $F_{1} \subset F_{2} \subset \cdots \subset M$ with wot-dense union.
(Note: finite dim'l $\Leftrightarrow \bigoplus_{k=1}^{N} M_{n(k)}(\mathbb{C})$.)
Theorem (Murray-von Neumann, 1943)
There is a unique AFD factor of type I_{1}, \mathcal{R}.

APPROXIMATELY FINITE DIMENSIONAL VN ALGEBRAS

Def: Approximately finite dimensional (AFD) vN algebra M
Contains finite dim'l subalgebras $F_{1} \subset F_{2} \subset \cdots \subset M$ with wot-dense union.
(Note: finite dim'l $\Leftrightarrow \bigoplus_{k=1}^{N} M_{n(k)}(\mathbb{C})$.)
Theorem (Murray-von Neumann, 1943)
There is a unique AFD factor of type I_{1}, \mathcal{R}.

One issue: exhibiting internal finite dim'l approximations verifying AFD condition can be difficult.

Would like abstract condition, avoiding concrete internal structural requirements.

AMENABILITY

Group case

A (discrete) group 「 is amenable if it admits a finitely additive left-invariant probability measure on its subsets - a "mean".

- Includes finite groups, abelian groups
- Closed under direct limits, taking quotients, subgroups, extensions
- Important non-example: free group $\mathbb{F}_{n}(n \geq 2)$. Related to Banach-Tarski paradox.

AMENABILITY

Group case

A (discrete) group Γ is amenable if it admits a finitely additive left-invariant probability measure on its subsets - a "mean".

- Includes finite groups, abelian groups
- Closed under direct limits, taking quotients, subgroups, extensions
- Important non-example: free group $\mathbb{F}_{n}(n \geq 2)$. Related to Banach-Tarski paradox.

Can define an analog for C^{*}-algebras and vN algebras. It turns out (with quite some effort) that:
Γ amenable $\Leftrightarrow C_{\lambda}^{*}(\Gamma)$ amenable $\Leftrightarrow \mathrm{VN}(\Gamma)$ amenable.

CONNES' THEOREM; CLASSIFYING AMENABLE FACTORS

Connes' theorem, 1976

A $\vee N$ algebra M is amenable $\Leftrightarrow M$ is AFD.

CONNES' THEOREM; CLASSIFYING AMENABLE FACTORS

Connes' theorem, 1976
A $v N$ algebra M is amenable $\Leftrightarrow M$ is AFD.
Theorem (Connes, Haagerup, Murray-von Neumann)
There is a unique amenable factor for each of the types I_{n} $(n \in \mathbb{N}), \mathrm{I}_{\infty}, \mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{II}_{\lambda}(0<\lambda \leq 1)$, and the type III_{0} factors correspond to certain ergodic flows.
"A triumph of 20th century mathematics" (V.F.R. Jones).

CONNES' THEOREM; CLASSIFYING AMENABLE FACTORS

Connes' theorem, 1976

$A \vee N$ algebra M is amenable $\Leftrightarrow M$ is AFD.
Theorem (Connes, Haagerup, Murray-von Neumann)
There is a unique amenable factor for each of the types I_{n} $(n \in \mathbb{N}), \mathrm{I}_{\infty}, \mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{II}_{\lambda}(0<\lambda \leq 1)$, and the type III_{0} factors correspond to certain ergodic flows.
"A triumph of 20th century mathematics" (V.F.R. Jones).
Led to further breakthroughs in related areas, e.g.: all free ergodic probability measure preserving actions of countable amenable groups are orbit equivalent (Connes-Feldman-Weiss).

CLASSIFYING C*-ALGEBRAS

EARLY RESULTS: AF ALGEBRAS, K-THEORY

Analog of AFD vN algebras: approximately finite dimensional (AF) C*-algebras, admit an ascending sequence of finite dimensional algebras that are $\|\cdot\|$-dense.

EARLY RESULTS: AF ALGEBRAS, K-THEORY

Analog of AFD vN algebras: approximately finite dimensional (AF) C*-algebras, admit an ascending sequence of finite dimensional algebras that are $\|\cdot\|$-dense.

Theorem (Elliott, 1977)
AF C*-algebras are classified by their K_{0}-groups.

EARLY RESULTS: AF ALGEBRAS, K-THEORY

Analog of AFD vN algebras: approximately finite dimensional (AF) C*-algebras, admit an ascending sequence of finite dimensional algebras that are $\|\cdot\|$-dense.

Theorem (Elliott, 1977)
AF C*-algebras are classified by their K_{0}-groups.
K-theory for C*-algebras
Extension of Atiyah and Hirzebruch's topological K-theory, which concerned itself with the study of vector bundles using algebraic means.
E.g.: When $A=C(X)$, have $K_{0}(A) \otimes \mathbb{Q} \cong \bigoplus H^{2 n}(X ; \mathbb{Q})$.

TOWARDS A CLASSIFICATION

The AF condition is much more restrictive on C^{*}-algebras than on vN algebras. Useful comparison:

- $L^{\infty}(X, \mu):$ AFD $v N$ algebra
- $C(X)$: only $A F$ if X is zero dimensional (e.g. Cantor set)

TOWARDS A CLASSIFICATION

The AF condition is much more restrictive on C^{*}-algebras than on vN algebras. Useful comparison:

- $L^{\infty}(X, \mu)$: AFD vN algebra
- $C(X)$: only AF if X is zero dimensional (e.g. Cantor set)

Elliott's classification program (ICM, 1994)

Classify and understand the structure of simple amenable C*-algebras, in the spirit of Connes, Haagerup.

TOWARDS A CLASSIFICATION (1990S)

- 1990s, 2000s: Progress classifying "higher dimensional" algebras relying on concrete internal structure. Think of internal $\|\cdot\|$-approximations by C^{*}-algebras of the form $M_{n}(C(X))$.

TOWARDS A CLASSIFICATION (1990S)

- 1990s, 2000s: Progress classifying "higher dimensional" algebras relying on concrete internal structure. Think of internal $\|\cdot\|$-approximations by C^{*}-algebras of the form $M_{n}(C(X))$.
- Important early example: every irrational rotation algebra A_{θ} is proved to be internally approximated by $M_{n}(C(\mathbb{T}))$.

TOWARDS A CLASSIFICATION (1990S)

- 1990s, 2000s: Progress classifying "higher dimensional" algebras relying on concrete internal structure. Think of internal $\|\cdot\|$-approximations by C^{*}-algebras of the form $M_{n}(C(X))$.
- Important early example: every irrational rotation algebra A_{θ} is proved to be internally approximated by $M_{n}(C(\mathbb{T}))$.
- The purely infinite case, the analog of type III vN algebras, settled by Kirchberg and Phillips in late 90s.

TOWARDS A CLASSIFICATION (2000s, 2010s)

- 2000s: counterexamples of Toms, Rørdam show that a classification of all simple amenable C^{*}-algebras is too much to hope for.

TOWARDS A CLASSIFICATION (2000s, 2010s)

- 2000s: counterexamples of Toms, Rørdam show that a classification of all simple amenable C^{*}-algebras is too much to hope for.
- Last 10-15 years: development of Toms-Winter regularity theory, helping decide which simple amenable C^{*}-algebras are well-behaved, or regular, enough to stand a chance at being classified. One approach: noncommutative version of covering dimension for C^{*}-algebras.

TOWARDS A CLASSIFICATION (2000S, 2010S)

- 2000s: counterexamples of Toms, Rørdam show that a classification of all simple amenable C^{*}-algebras is too much to hope for.
- Last 10-15 years: development of Toms-Winter regularity theory, helping decide which simple amenable C^{*}-algebras are well-behaved, or regular, enough to stand a chance at being classified. One approach: noncommutative version of covering dimension for C^{*}-algebras.
- Recall: in the vN algebra setting, amenability is enough for classification. Not so in the C^{*}-setting. We need to require regularity in addition to amenability to avoid the counterexamples above.

THE CLASSIFICATION THEOREM

Along with J. Gabe (Southern Denmark), A. Tikuisis (Ottawa), C. Schafhauser (Nebraska-Lincoln), and S. White (Oxford) we completed a proof of the following:

THE CLASSIFICATION THEOREM

Along with J. Gabe (Southern Denmark), A. Tikuisis (Ottawa),
C. Schafhauser (Nebraska-Lincoln), and S. White (Oxford) we completed a proof of the following:

Theorem

Simple, amenable, and regular C^{*}-algebras that satisfy the Universal Coefficient Theorem are classified up to isomorphism by their K-theory and traces.

This settles the central classification conjecture in the C^{*}-setting.

Our approach not only draws inspiration from, but has a direct connection with the classical vN classification techniques.

EXAMPLE: CROSSED PRODUCTS

Irrational rotation algebras

$A_{\theta}=C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_{0} and K_{1} groups are both \mathbb{Z}^{2}. The trace portion of the invariant singles out θ, so that $A_{\theta} \cong A_{\theta^{\prime}} \Leftrightarrow \theta= \pm \theta^{\prime} \bmod \mathbb{Z}$.

EXAMPLE: CROSSED PRODUCTS

Irrational rotation algebras

$A_{\theta}=C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_{0} and K_{1} groups are both \mathbb{Z}^{2}. The trace portion of the invariant singles out θ, so that $A_{\theta} \cong A_{\theta^{\prime}} \Leftrightarrow \theta= \pm \theta^{\prime} \bmod \mathbb{Z}$.

More general crossed products (Kerr-Naryshkin)
The classification applies to applies to $C(X) \rtimes \Gamma$ if

- X is a compact metric space of finite covering dimension
- $\Gamma \curvearrowright X$ is free
- 「 is elementary amenable
(Γ is built up starting with finite or abelian groups; e.g., nilpotent groups, solvable groups, linear groups, ...)

EXAMPLE: CROSSED PRODUCTS

Irrational rotation algebras

$A_{\theta}=C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_{0} and K_{1} groups are both \mathbb{Z}^{2}. The trace portion of the invariant singles out θ, so that $A_{\theta} \cong A_{\theta^{\prime}} \Leftrightarrow \theta= \pm \theta^{\prime} \bmod \mathbb{Z}$.

More general crossed products (Kerr-Naryshkin)

The classification applies to applies to $C(X) \rtimes\ulcorner$ if

- X is a compact metric space of finite covering dimension
- $\Gamma \curvearrowright X$ is free
- 「 is elementary amenable
(Γ is built up starting with finite or abelian groups; e.g., nilpotent groups, solvable groups, linear groups, ...)

EXAMPLE: CROSSED PRODUCTS

Irrational rotation algebras

$A_{\theta}=C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_{0} and K_{1} groups are both \mathbb{Z}^{2}. The trace portion of the invariant singles out θ, so that $A_{\theta} \cong A_{\theta^{\prime}} \Leftrightarrow \theta= \pm \theta^{\prime} \bmod \mathbb{Z}$.

More general crossed products (Kerr-Naryshkin)

The classification applies to applies to $C(X) \rtimes\ulcorner$ if

- X is a compact metric space of finite covering dimension
- $\Gamma \curvearrowright X$ is free
- 「 is elementary amenable
(\ulcorner is built up starting with finite or abelian groups; e.g., nilpotent groups, solvable groups, linear groups, ...)

THANK YOU!

