CLASSIFYING AMENABLE OPERATOR ALGEBRAS

JOINT WORK WITH J. GABE, C. SCHAFHAUSER, A. TIKUISIS, AND S. WHITE

José Carrión TCU

INTRODUCTION

SOME MOTIVATION

Consider

$$M_2(\mathbb{C}) \subset M_4(\mathbb{C}) \subset M_8(\mathbb{C}) \subset \cdots \subset \bigcup M_{2^n}(\mathbb{C})$$

$$a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

Think of the elements of $\bigcup M_{2^n}(\mathbb{C})$ as "infinite by infinite matrices" that act on the vector space $\ell^2(\mathbb{N})$.

Several ways to topologize these. Here are two:

Several ways to topologize these. Here are two:

• two "matrices" are close if enough of their entries are close. This leads to the *weak operator topology* (wot).

Several ways to topologize these. Here are two:

- two "matrices" are close if enough of their entries are close. This leads to the weak operator topology (wot).
- two "matrices" are close if they map the unit ball of $\ell^2(\mathbb{N})$ to nearly the same place. This leads to the $\|\cdot\|$ -topology.

Several ways to topologize these. Here are two:

- two "matrices" are close if enough of their entries are close. This leads to the weak operator topology (wor).
- two "matrices" are close if they map the unit ball of $\ell^2(\mathbb{N})$ to nearly the same place. This leads to the $\|\cdot\|$ -topology.

These are examples of *operator algebras*. This talk is about classifying them: how to tell them apart.

Two very early examples of classification results:

Murray-von Neumann, 1943

$$\overline{\bigcup M_{2^n}(\mathbb{C})}^{\text{ WOT}} \cong \overline{\bigcup M_{3^n}(\mathbb{C})}^{\text{ WOT}}$$

Two very early examples of classification results:

$$\overline{\bigcup M_{2^n}(\mathbb{C})}^{\|\cdot\|} \not\cong \overline{\bigcup M_{3^n}(\mathbb{C})}^{\|\cdot\|}$$

Two very early examples of classification results:

Murray-von Neumann, 1943
$$\overline{\bigcup M_{2^n}(\mathbb{C})}^{\text{WOT}} \cong \overline{\bigcup M_{3^n}(\mathbb{C})}^{\text{WOT}}$$
Glimm, 1960
$$\overline{\bigcup M_{2^n}(\mathbb{C})}^{\|\cdot\|} \ncong \overline{\bigcup M_{3^n}(\mathbb{C})}^{\|\cdot\|}$$

How to distinguish these last two? Associate a group with such algebras that is invariant under isomorphism, called $K_0(-)$. It turns out that

$$K_0\left(\overline{\bigcup M_{p^n}(\mathbb{C})}^{\|\cdot\|}\right) = \left\{\frac{m}{p^n}: m, n \in \mathbb{Z}\right\}.$$

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: *-algebra, $\langle T^*v, w \rangle = \langle v, Tw \rangle$
- analytic structure: $||T|| = \sup\{||Tv|| : ||v|| = 1\}$, Banach space.

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: *-algebra, $\langle T^*v,w\rangle=\langle v,Tw\rangle$
- analytic structure: $||T|| = \sup\{||Tv|| : ||v|| = 1\}$, Banach space.

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: *-algebra, $\langle T^*v, w \rangle = \langle v, Tw \rangle$
- analytic structure: $||T|| = \sup\{||Tv|| : ||v|| = 1\}$, Banach space.
- · e.g. $\mathcal{H}=\mathbb{C}^n \leadsto M_n(\mathbb{C})$

Example: $\mathcal{B}(\mathcal{H})$, bounded operators on a Hilbert space

- algebraic structure: *-algebra, $\langle T^*v, w \rangle = \langle v, Tw \rangle$
- analytic structure: $||T|| = \sup\{||Tv|| : ||v|| = 1\}$, Banach space.
- e.g. $\mathcal{H}=\mathbb{C}^n \leadsto M_n(\mathbb{C})$

C*-algebras

- $A \subset \mathcal{B}(\mathcal{H})$, closed in $\|\cdot\|$
- A abelian $\rightsquigarrow C(X)$
- · "Topological flavor"

von Neumann algebras

- $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$, closed in wor.
- \mathcal{M} abelian $\rightsquigarrow L^{\infty}(X,\mu)$
- · "Measure theoretic flavor"

Example: $C^*(\mathbb{Z})$

Can represent \mathbb{Z} "concretely" as operators on $\ell^2(\mathbb{Z})$, $n \mapsto \lambda_n$; λ_n shifts entries of vector by n.

$$C_{\lambda}^{+}(\mathbb{Z}) := \|\cdot\| - \text{closure of } \times -\text{alg. generated by the } \lambda_{n}^{+}$$

• Γ : (discrete) group. Get Hilbert space $\ell^2(\Gamma)$ of square summable functions $\Gamma \to \mathbb{C}$ with basis $\{\delta_\gamma\}_{\gamma \in \Gamma}$ (δ_γ : indicator function of $\{\gamma\}$).

- Γ : (discrete) group. Get Hilbert space $\ell^2(\Gamma)$ of square summable functions $\Gamma \to \mathbb{C}$ with basis $\{\delta_\gamma\}_{\gamma \in \Gamma}$ (δ_γ : indicator function of $\{\gamma\}$).
- left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}(\ell^{2}(\Gamma))$, where $\lambda_{\gamma}(\delta_{\gamma'}) = \delta_{\gamma\gamma'}$.

- Γ : (discrete) group. Get Hilbert space $\ell^2(\Gamma)$ of square summable functions $\Gamma \to \mathbb{C}$ with basis $\{\delta_\gamma\}_{\gamma \in \Gamma}$ (δ_γ : indicator function of $\{\gamma\}$).
- left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}(\ell^{2}(\Gamma))$, where $\lambda_{\gamma}(\delta_{\gamma'}) = \delta_{\gamma\gamma'}$.
- · $C^*_{\lambda}(\Gamma) := \| \cdot \|$ -closure of *-algebra generated by the λ_{γ} 's

More general example: group algebras

- Γ : (discrete) group. Get Hilbert space $\ell^2(\Gamma)$ of square summable functions $\Gamma \to \mathbb{C}$ with basis $\{\delta_\gamma\}_{\gamma \in \Gamma}$ (δ_γ : indicator function of $\{\gamma\}$).
- left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}(\ell^{2}(\Gamma))$, where $\lambda_{\gamma}(\delta_{\gamma'}) = \delta_{\gamma\gamma'}$.
- · $C^*_{\lambda}(\Gamma) \coloneqq \|\cdot\|$ -closure of *-algebra generated by the λ_{γ} 's
- · $vN(\Gamma) := wot\text{-closure of }*\text{-algebra generated by the }\lambda_{\gamma}\text{'s}$

- Γ : (discrete) group. Get Hilbert space $\ell^2(\Gamma)$ of square summable functions $\Gamma \to \mathbb{C}$ with basis $\{\delta_\gamma\}_{\gamma \in \Gamma}$ (δ_γ : indicator function of $\{\gamma\}$).
- left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}(\ell^{2}(\Gamma))$, where $\lambda_{\gamma}(\delta_{\gamma'}) = \delta_{\gamma\gamma'}$.
- · $C^*_{\lambda}(\Gamma) \coloneqq \|\cdot\|$ -closure of *-algebra generated by the λ_{γ} 's
- · $vN(\Gamma) \coloneqq wot\text{-}closure of *-algebra generated by the λ_{γ}'s$

This generalizes the Fourier transform:

- $\cdot C_{\lambda}^*(\mathbb{Z}) \cong C(\mathbb{T})$
- Moreover: $vN(\mathbb{Z}) \cong L^{\infty}(\mathbb{T})$

- Γ : (discrete) group. Get Hilbert space $\ell^2(\Gamma)$ of square summable functions $\Gamma \to \mathbb{C}$ with basis $\{\delta_\gamma\}_{\gamma \in \Gamma}$ (δ_γ : indicator function of $\{\gamma\}$).
- left regular representation: $\gamma \mapsto \lambda_{\gamma} \in \mathcal{B}(\ell^{2}(\Gamma))$, where $\lambda_{\gamma}(\delta_{\gamma'}) = \delta_{\gamma\gamma'}$.
- $\cdot \ \ C^*_{\lambda}(\Gamma) \coloneqq \| \cdot \| \text{-closure of } *\text{-algebra generated by the } \lambda_{\gamma} \text{'s}$
- · $vN(\Gamma) := wor-closure$ of *-algebra generated by the λ_{γ} 's

This generalizes the Fourier transform:

- $\cdot C_{\lambda}^*(\mathbb{Z}) \cong C(\mathbb{T}) \not\cong C(\mathbb{T}^2) \cong C^*(\mathbb{Z}^2)$
- · Moreover: $vN(\mathbb{Z})\cong L^\infty(\mathbb{T})\cong L^\infty(\mathbb{T}^2)\cong vN(\mathbb{Z}^2)$

- Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varphi \colon \mathbb{T} \to \mathbb{T}$ be rotation by $2\pi\theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}$: $n \mapsto \varphi^n$.

- Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varphi \colon \mathbb{T} \to \mathbb{T}$ be rotation by $2\pi\theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}$: $n \mapsto \varphi^n$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows:

- Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varphi \colon \mathbb{T} \to \mathbb{T}$ be rotation by $2\pi\theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}$: $n \mapsto \varphi^n$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows: Consider the operators T and M_f $(f \in C(\mathbb{T}))$ on $L^2(\mathbb{T})$,

$$T(g) = g \circ \varphi^{-1}, \qquad M_f(g) = fg.$$

 $\mathsf{A}_{\theta} := \|\cdot\|\text{-closure of the }*\text{-algebra they generate}.$

- Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varphi \colon \mathbb{T} \to \mathbb{T}$ be rotation by $2\pi\theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}$: $n \mapsto \varphi^n$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows: Consider the operators T and M_f $(f \in C(\mathbb{T}))$ on $L^2(\mathbb{T})$,

$$T(g) = g \circ \varphi^{-1}, \qquad M_f(g) = fg.$$

 $A_{\theta}:=\|\cdot\|$ -closure of the *-algebra they generate. Note: $T^{-1}M_fT=M_{f\circ\varphi^{-1}}$. Think of semidirect products.

- Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varphi \colon \mathbb{T} \to \mathbb{T}$ be rotation by $2\pi\theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}$: $n \mapsto \varphi^n$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows: Consider the operators T and M_f $(f \in C(\mathbb{T}))$ on $L^2(\mathbb{T})$,

$$T(g) = g \circ \varphi^{-1}, \qquad M_f(g) = fg.$$

 $A_{\theta} := \|\cdot\|$ -closure of the *-algebra they generate. Note: $T^{-1}M_fT = M_{f\circ \varphi^{-1}}$. Think of semidirect products.

(Foreshadowing) observations on A_{θ}

• A_{θ} is a "noncommutative" version of $\mathbb{T}^2 \rightsquigarrow A_{\theta}$ is *finite dimensional* (in some noncommutative sense).

- Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varphi \colon \mathbb{T} \to \mathbb{T}$ be rotation by $2\pi\theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}$: $n \mapsto \varphi^n$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows: Consider the operators T and M_f $(f \in C(\mathbb{T}))$ on $L^2(\mathbb{T})$,

$$T(g) = g \circ \varphi^{-1}, \qquad M_f(g) = fg.$$

 $A_{\theta} := \|\cdot\|$ -closure of the *-algebra they generate. Note: $T^{-1}M_fT = M_{f\circ \varphi^{-1}}$. Think of semidirect products.

(Foreshadowing) observations on A_{θ}

- A_{θ} is a "noncommutative" version of $\mathbb{T}^2 \rightsquigarrow A_{\theta}$ is *finite dimensional* (in some noncommutative sense).
- $\theta \notin \mathbb{Q} \Rightarrow \mathbb{A}$ nontrivial closed invariant subsets of \mathbb{T} . Translation: no nontrivial closed ideals of A_{θ} . It's <u>simple</u>.

- Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varphi \colon \mathbb{T} \to \mathbb{T}$ be rotation by $2\pi\theta$.
- Get action $\mathbb{Z} \curvearrowright \mathbb{T}$: $n \mapsto \varphi^n$.
- A_{θ} is generated by φ and $C(\mathbb{T})$, as follows: Consider the operators T and M_f $(f \in C(\mathbb{T}))$ on $L^2(\mathbb{T})$,

$$T(g) = g \circ \varphi^{-1}, \qquad M_f(g) = fg.$$

 $A_{\theta} := \|\cdot\|$ -closure of the *-algebra they generate. Note: $T^{-1}M_fT = M_{f\circ \omega^{-1}}$. Think of semidirect products.

(Foreshadowing) observations on A_{θ}

- A_{θ} is a "noncommutative" version of $\mathbb{T}^2 \rightsquigarrow A_{\theta}$ is *finite dimensional* (in some noncommutative sense).
- $\theta \notin \mathbb{Q} \Rightarrow \mathbb{A}$ nontrivial closed invariant subsets of \mathbb{T} . Translation: no nontrivial closed ideals of A_{θ} . It's simple.
- A_{θ} is built using friendly (even abelian) objects. It's amenable.

- group Γ acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\sim} X$.
- Get induced action of Γ on C(X): $\gamma f = f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C^*_{\lambda}(\Gamma)$ and C(X) and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \leadsto N \rtimes H$.

- group Γ acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\sim} X$.
- Get induced action of Γ on C(X): $\gamma f = f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C^*_{\lambda}(\Gamma)$ and C(X) and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \leadsto N \rtimes H$.

- group Γ acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\sim} X$.
- Get induced action of Γ on C(X): $\gamma f = f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C^*_{\lambda}(\Gamma)$ and C(X) and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \leadsto N \rtimes H$.

- group Γ acts on X (e.g compact metric space) by homeomorphisms: $\Gamma \stackrel{\alpha}{\sim} X$.
- Get induced action of Γ on C(X): $\gamma f = f \circ \alpha_{\gamma}^{-1}$.
- Roughly speaking, can combine $C^*_{\lambda}(\Gamma)$ and C(X) and form the crossed product $C(X) \rtimes \Gamma$.
- Construction is similar to semidirect product of groups: $H \curvearrowright N \leadsto N \rtimes H$.

CLASSIFYING VN ALGEBRAS

FACTORS, FINITE DIMENSIONAL

APPROXIMATIONS, AMENABILITY:

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- · $M_k(\mathbb{C})$
- · $B(\ell^2(\mathbb{N}))$

FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- · $M_k(\mathbb{C})$
- · $B(\ell^2(\mathbb{N}))$

Examples II

 $\cdot \,\, \mathcal{R} := \overline{\bigcup_{n \geq 1} M_{2^n}(\mathbb{C})}^{\text{WOT}}$

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- · $M_k(\mathbb{C})$
- · $B(\ell^2(\mathbb{N}))$

Examples II

- $\cdot \ \mathcal{R} := \overline{\bigcup_{n \geq 1} M_{2^n}(\mathbb{C})}^{\text{WOT}}$
- · $vN(S_{\infty})$

 $S_{\infty}=$ finite permutations on $\mathbb N$

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- · $M_k(\mathbb{C})$
- $B(\ell^2(\mathbb{N}))$

Examples II

- $\cdot \ \mathcal{R} := \overline{\bigcup_{n \geq 1} M_{2^n}(\mathbb{C})}^{\text{WOT}}$
- · $vN(S_{\infty})$

 $S_{\infty} = \text{finite permutations on } \mathbb{N}$

· $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

- · $M_k(\mathbb{C})$
- $B(\ell^2(\mathbb{N}))$

Examples II

- $\cdot \ \mathcal{R} := \overline{\bigcup_{n \geq 1} M_{2^n}(\mathbb{C})}^{\text{WOT}}$
- · $vN(S_{\infty})$

 $S_{\infty} = \text{finite permutations on } \mathbb{N}$

- · $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$
- $B(\ell^2(\mathbb{N}, \mathcal{R}))$ ("matrices" with entries in \mathcal{R})

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

```
\begin{array}{ll} \cdot \ \mathit{M}_{\mathit{k}}(\mathbb{C}) & \qquad & \text{projections} \sim \{1,2,\ldots,n\} \\ \cdot \ \mathit{B}\big(\ell^2(\mathbb{N})\big) & \qquad & \text{type I}_{\mathit{n}} \quad (\mathit{n}=\infty \text{ allowed}) \end{array}
```

Examples II

- $\cdot \,\, \mathcal{R} := \overline{\bigcup_{n \geq 1} M_{2^n}(\mathbb{C})}^{\mathsf{WOT}}$
- $vN(S_{\infty})$ $S_{\infty} = \text{finite permutations on } \mathbb{N}$
- · $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$
- $B(\ell^2(\mathbb{N}, \mathcal{R}))$ ("matrices" with entries in \mathcal{R})

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

 $\begin{array}{ll} \cdot \ \mathit{M}_{\mathit{k}}(\mathbb{C}) & \quad \text{projections} \sim \{1, 2, \dots, n\} \\ \cdot \ \mathit{B}(\ell^{2}(\mathbb{N})) & \quad \text{\sim type I}_{\mathit{n}} & (\mathit{n} = \infty \text{ allowed}) \end{array}$

Examples II

- $\cdot \,\, \mathcal{R} := \overline{\bigcup_{n \geq 1} M_{2^n}(\mathbb{C})}^{\text{WOT}}$
- $vN(S_{\infty})$ $S_{\infty} = \text{finite permutations on } \mathbb{N}$
- · $L^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$
- $B(\ell^2(\mathbb{N}, \mathcal{R}))$ ("matrices" with entries in \mathcal{R})

projections $\sim [0, 1]$ $\rightsquigarrow type II_1$

Factor: a vN alg. with no nontrivial vN alg. ideals.

Examples I

 \cdot $M_k(\mathbb{C})$ projections $\sim \{1, 2, ..., n\}$ \cdot $B(\ell^2(\mathbb{N}))$ \leadsto type I_n $(n = \infty \text{ allowed})$

Examples II

 $\begin{array}{ll} \cdot \ \mathcal{R} := \overline{\bigcup_{n \geq 1} M_{2^n}(\mathbb{C})}^{\text{WOT}} \\ \cdot \ \text{VN}(S_{\infty}) \\ S_{\infty} = \text{finite permutations on } \mathbb{N} \end{array} \right\} \begin{array}{l} \text{projections} \sim [0,1] \\ \sim \text{type } \mathbb{I}_1 \\ \cdot \ B(\ell^2(\mathbb{N},\mathcal{R})) \\ \text{("matrices" with entries in } \mathcal{R}) \end{array} \right\} \begin{array}{l} \text{projections} \sim [0,\infty] \\ \sim \text{type } \mathbb{I}_{\infty} \end{array}$

APPROXIMATELY FINITE DIMENSIONAL VN ALGEBRAS

Def: Approximately finite dimensional (AFD) vN algebra M

Contains finite dim'l subalgebras $F_1 \subset F_2 \subset \cdots \subset M$ with wor-dense union.

(Note: finite dim'l $\Leftrightarrow \bigoplus_{k=1}^N M_{n(k)}(\mathbb{C})$.)

APPROXIMATELY FINITE DIMENSIONAL VN ALGEBRAS

Def: Approximately finite dimensional (AFD) vN algebra M

Contains finite dim'l subalgebras $F_1 \subset F_2 \subset \cdots \subset M$ with wor-dense union.

(Note: finite dim'l $\Leftrightarrow \bigoplus_{k=1}^{N} M_{n(k)}(\mathbb{C})$.)

Theorem (Murray-von Neumann, 1943)

There is a unique AFD factor of type II₁, \mathcal{R} .

APPROXIMATELY FINITE DIMENSIONAL VN ALGEBRAS

Def: Approximately finite dimensional (AFD) vN algebra ${\it M}$

Contains finite dim'l subalgebras $F_1 \subset F_2 \subset \cdots \subset M$ with wor-dense union.

(Note: finite dim'l $\Leftrightarrow \bigoplus_{k=1}^{N} M_{n(k)}(\mathbb{C})$.)

Theorem (Murray-von Neumann, 1943)

There is a unique AFD factor of type II_1 , \mathcal{R} .

One issue: exhibiting internal finite dim'l approximations verifying AFD condition can be difficult.

Would like abstract condition, avoiding concrete internal structural requirements.

AMENABILITY

Group case

A (discrete) group Γ is amenable if it admits a finitely additive left-invariant probability measure on its subsets — a "mean".

- · Includes finite groups, abelian groups
- Closed under direct limits, taking quotients, subgroups, extensions
- Important non-example: free group $\mathbb{F}_n (n \ge 2)$. Related to Banach-Tarski paradox.

AMENABILITY

Group case

A (discrete) group Γ is amenable if it admits a finitely additive left-invariant probability measure on its subsets — a "mean".

- · Includes finite groups, abelian groups
- Closed under direct limits, taking quotients, subgroups, extensions
- Important non-example: free group $\mathbb{F}_n (n \ge 2)$. Related to Banach-Tarski paradox.

Can define an analog for *C**-algebras and vN algebras. It turns out (with quite some effort) that:

 Γ amenable $\Leftrightarrow C_{\lambda}^*(\Gamma)$ amenable \Leftrightarrow vN(Γ) amenable.

CONNES' THEOREM; CLASSIFYING AMENABLE FACTORS

Connes' theorem, 1976

A vN algebra M is amenable $\Leftrightarrow M$ is AFD.

CONNES' THEOREM; CLASSIFYING AMENABLE FACTORS

Connes' theorem, 1976

A vN algebra M is amenable $\Leftrightarrow M$ is AFD.

Theorem (Connes, Haagerup, Murray-von Neumann)

There is a unique amenable factor for each of the types I_n $(n \in \mathbb{N})$, I_{∞} , II_1 , II_{∞} , III_{λ} $(0 < \lambda \le 1)$, and the type III_0 factors correspond to certain ergodic flows.

"A triumph of 20th century mathematics" (V.F.R. Jones).

CONNES' THEOREM; CLASSIFYING AMENABLE FACTORS

Connes' theorem, 1976

A vN algebra M is amenable $\Leftrightarrow M$ is AFD.

Theorem (Connes, Haagerup, Murray-von Neumann)

There is a unique amenable factor for each of the types I_n $(n \in \mathbb{N})$, I_{∞} , II_1 , II_{∞} , III_{λ} $(0 < \lambda \le 1)$, and the type III_0 factors correspond to certain ergodic flows.

"A triumph of 20th century mathematics" (V.F.R. Jones).

Led to further breakthroughs in related areas, e.g.: all free ergodic probability measure preserving actions of countable amenable groups are orbit equivalent (Connes-Feldman-Weiss).

CLASSIFYING C*-ALGEBRAS

EARLY RESULTS: AF ALGEBRAS, K-THEORY

Analog of AFD vN algebras: approximately finite dimensional (AF) C^* -algebras, admit an ascending sequence of finite dimensional algebras that are $\|\cdot\|$ -dense.

EARLY RESULTS: AF ALGEBRAS, K-THEORY

Analog of AFD vN algebras: approximately finite dimensional (AF) C^* -algebras, admit an ascending sequence of finite dimensional algebras that are $\|\cdot\|$ -dense.

Theorem (Elliott, 1977)

AF C^* -algebras are classified by their K_0 -groups.

EARLY RESULTS: AF ALGEBRAS, K-THEORY

Analog of AFD vN algebras: approximately finite dimensional (AF) C^* -algebras, admit an ascending sequence of finite dimensional algebras that are $\|\cdot\|$ -dense.

Theorem (Elliott, 1977)

AF C^* -algebras are classified by their K_0 -groups.

K-theory for C*-algebras

Extension of Atiyah and Hirzebruch's topological *K*-theory, which concerned itself with the study of vector bundles using algebraic means.

E.g.: When A = C(X), have $K_0(A) \otimes \mathbb{Q} \cong \bigoplus H^{2n}(X; \mathbb{Q})$.

TOWARDS A CLASSIFICATION

The AF condition is much more restrictive on *C**-algebras than on vN algebras. Useful comparison:

- $L^{\infty}(X,\mu)$: AFD vN algebra
- C(X): only AF if X is zero dimensional (e.g. Cantor set)

TOWARDS A CLASSIFICATION

The AF condition is much more restrictive on *C**-algebras than on vN algebras. Useful comparison:

- $L^{\infty}(X,\mu)$: AFD vN algebra
- C(X): only AF if X is zero dimensional (e.g. Cantor set)

Elliott's classification program (ICM, 1994)

Classify and understand the structure of simple amenable C*-algebras, in the spirit of Connes, Haagerup.

TOWARDS A CLASSIFICATION (1990s)

• 1990s, 2000s: Progress classifying "higher dimensional" algebras relying on concrete internal structure. Think of internal $\|\cdot\|$ -approximations by C^* -algebras of the form $M_n(C(X))$.

TOWARDS A CLASSIFICATION (1990s)

- 1990s, 2000s: Progress classifying "higher dimensional" algebras relying on concrete internal structure. Think of internal $\|\cdot\|$ -approximations by C^* -algebras of the form $M_n(C(X))$.
- Important early example: every irrational rotation algebra A_{θ} is proved to be internally approximated by $M_n(C(\mathbb{T}))$.

TOWARDS A CLASSIFICATION (1990s)

- 1990s, 2000s: Progress classifying "higher dimensional" algebras relying on concrete internal structure. Think of internal || · ||-approximations by C*-algebras of the form M_n(C(X)).
- Important early example: every irrational rotation algebra A_{θ} is proved to be internally approximated by $M_n(C(\mathbb{T}))$.
- The *purely infinite* case, the analog of type III vN algebras, settled by Kirchberg and Phillips in late 90s.

TOWARDS A CLASSIFICATION (2000S, 2010S)

• 2000s: counterexamples of Toms, Rørdam show that a classification of all simple amenable *C**-algebras is too much to hope for.

TOWARDS A CLASSIFICATION (2000S, 2010S)

- 2000s: counterexamples of Toms, Rørdam show that a classification of all simple amenable *C**-algebras is too much to hope for.
- Last 10-15 years: development of Toms–Winter regularity theory, helping decide which simple amenable *C**-algebras are well-behaved, or *regular*, enough to stand a chance at being classified. One approach: noncommutative version of covering dimension for *C**-algebras.

TOWARDS A CLASSIFICATION (2000S, 2010S)

- 2000s: counterexamples of Toms, Rørdam show that a classification of all simple amenable *C**-algebras is too much to hope for.
- Last 10-15 years: development of Toms–Winter regularity theory, helping decide which simple amenable *C**-algebras are well-behaved, or *regular*, enough to stand a chance at being classified. One approach: noncommutative version of covering dimension for *C**-algebras.
- Recall: in the vN algebra setting, amenability is enough for classification. Not so in the C*-setting. We need to require regularity in addition to amenability to avoid the counterexamples above.

THE CLASSIFICATION THEOREM

Along with J. Gabe (Southern Denmark), A. Tikuisis (Ottawa), C. Schafhauser (Nebraska–Lincoln), and S. White (Oxford) we completed a proof of the following:

THE CLASSIFICATION THEOREM

Along with J. Gabe (Southern Denmark), A. Tikuisis (Ottawa), C. Schafhauser (Nebraska–Lincoln), and S. White (Oxford) we completed a proof of the following:

Theorem

Simple, amenable, and regular *C**-algebras that satisfy the Universal Coefficient Theorem are classified up to isomorphism by their *K*-theory and traces.

This settles the central classification conjecture in the C^* -setting.

Our approach not only draws inspiration from, but has a direct connection with the classical vN classification techniques.

Irrational rotation algebras

 $A_{\theta} = C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_0 and K_1 groups are both \mathbb{Z}^2 . The trace portion of the invariant singles out θ , so that $A_{\theta} \cong A_{\theta'} \Leftrightarrow \theta = \pm \theta' \mod \mathbb{Z}$.

Irrational rotation algebras

 $A_{\theta} = C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_0 and K_1 groups are both \mathbb{Z}^2 . The trace portion of the invariant singles out θ , so that $A_{\theta} \cong A_{\theta'} \Leftrightarrow \theta = \pm \theta' \mod \mathbb{Z}$.

More general crossed products (Kerr-Naryshkin)

The classification applies to applies to $C(X) \rtimes \Gamma$ if

- X is a compact metric space of finite covering dimension
- $\Gamma \curvearrowright X$ is free
- Γ is elementary amenable
 (Γ is built up starting with finite or abelian groups; e.g., nilpotent groups, solvable groups, linear groups, ...)

Irrational rotation algebras

 $A_{\theta} = C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_0 and K_1 groups are both \mathbb{Z}^2 . The trace portion of the invariant singles out θ , so that $A_{\theta} \cong A_{\theta'} \Leftrightarrow \theta = \pm \theta' \mod \mathbb{Z}$.

More general crossed products (Kerr-Naryshkin)

The classification applies to applies to $C(X) \rtimes \Gamma$ if

- \cdot X is a compact metric space of finite covering dimension
- $\Gamma \curvearrowright X$ is free
- Γ is elementary amenable
 (Γ is built up starting with finite or abelian groups; e.g., nilpotent groups, solvable groups, linear groups, ...)

Irrational rotation algebras

 $A_{\theta} = C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ satisfies the hypotheses. In this case, the K_0 and K_1 groups are both \mathbb{Z}^2 . The trace portion of the invariant singles out θ , so that $A_{\theta} \cong A_{\theta'} \Leftrightarrow \theta = \pm \theta' \mod \mathbb{Z}$.

More general crossed products (Kerr-Naryshkin)

The classification applies to applies to $C(X) \rtimes \Gamma$ if

- X is a compact metric space of finite covering dimension
- $\Gamma \curvearrowright X$ is free
- Γ is elementary amenable
 (Γ is built up starting with finite or abelian groups; e.g., nilpotent groups, solvable groups, linear groups, ...)

